
MATH 363 Assignment 4 Due in class March 22

Assignment 4 solutions

1. (a) This statement is false.

Let S1 = {0, 1}, S2 = {1, 2}, S3 = {0, 2}. Then S1 ∩ S2 = {1}, S2 ∩ S3 = {2} and S1 ∩ s3 = {0}
which are all non-empty but S1 is missing 2, S2 is missing 0 and S3 is missing 1 so no element is
in all three sets.

(b) Proof. If T contains only one vertex v then the statement is true since all subtrees contain v (since
the empty graph has no vertex is common with any other subtree and if there is only one subtree
T1, the statement is true).

Now suppose the statement is true for all trees T of size n− 1 for some n ≥ 2. Let T be any tree
of size n and T1, . . . , Tk be subtrees of T that pairwise intersect (V (Ti) ∩ V (Tj) 6= ∅∀i, j).

By the lemma proven in class, T contains a vertex v of degree 1. Either ∃j such that V (Tj) = {v}
or all subtrees Ti containing v also contains at least one other vertex.

In the first case, since every subtree intersects Tj , so v ∈ ∩k
i=1V (Ti) which proves the statement

(for T ).

In the second case, note that u, the only neighbour of v, is on the path from v to any other
vertex in T . Since every subtree is a tree and therefore connected, all subtrees Ti containing v

also contains u.

We claim that T1 − v, T2 − v, . . . , Tk − v pairwise intersect (and are all subtrees of T − v). Here,
we use the convention that Ti − v = Ti if v 6∈ Ti. Indeed, if not, there is a pair of subtrees Tℓ and
Tm that only intersected in v (since the subtrees pairwise intersect initially). But then v ∈ Tℓ so
u ∈ Tℓ and v ∈ Tm so u ∈ Tm. Therefore, u ∈ (Tℓ − v) ∩ (Tm − v) which is a contradiction.

Thus, by our hypothesis, T1 − v, . . . , Tk − v (as subtrees of T − v) contain a vertex in their
intersection (we have already proven in class that T − v is a tree if T is a tree and v has degree
1).

But ∩k
i=1V (Ti) − v is contained in ∩k

i=1V (Ti) so ∩k
i=1V (Ti) also contains a common vertex.

Thus, in all cases, we have shown that the statement holds for T . Since T is an arbitrary tree of
size n, we have proven the statement by induction.

2. (a) Suppose the statement is false. Then for some i and j, there is a path Q = q1 = pi, q2, . . . , qℓ = pj

which is of lower weight than pi, . . . , pj . But now we can replace the subpath from pi to pj by Q.
The weight of p1, p2, . . . , pi, q2, . . . , qℓ−1, pj, pj+1, . . . , pk is

i−1∑

m=1

wpm,pm+1
+

ℓ∑

m=1

wqm,qm+1
+

k−1∑

m=j

wpm,pm+1

<

i−1∑

m=1

wpm,pm+1
+

j−1∑

m=i

wpm,pm+1
+

k−1∑

m=j

wpm,pm+1

But this is the weight of P . This gives a contradiction since we have found a path from p1 to pk

of lower weight than P (which is suppose to be a minimum weight path).

(b) Suppose F is the set of chosen edges for some input G and weights w.

First we claim that (V, F ) contains no cycles. If this claim is false, consider the first iteration
where the set of chosen edges Fi yields a cycle in (V, Fi). Let e be the last chosen edge. Now at
the beginning of every iteration, S contains all vertices incident to a chosen edge (since whenever
we chose an edges, we add its endpoint not in S to S). So e had both endpoints in S which is a
contradiction (we need to chose an edge from S to V − S).

Next we claim that (V, F ) is connected. This is true since every vertex has a path to s (by
following prev pointers) and concatenating the path from u to s and the path from s to v gives a
walk from u to v for any u and v.
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Therefore (V, F ) is a tree.

3. (a) Here is a run of the second algorithm we saw.

From left to right, the figures are:

• the input graph with the initial matching,

• the digraph H that we built based on the initial matching where circles are unmatched vertices
in A and squares are neighbours of unmatched vertices in B and the highlighted edges from
a path from a vertex of A to a neighbour of B,

• the new matching after swapping edges on the augmenting path we found,

• the digraph H that we built based on the new matching, and

• the final matching after swapping on the second augmenting path we found.

(b) (see external figure)

From left to right, the first row contains

• the input graph,

• the shortest path from a to all other vertices,

• the shortest path from e to all other vertices,

• the shortest path from f to all other vertices, and

• the shortest path from g to all other vertices.

Note that we only needed any 3 of the four shortest path trees.

From left to right, the first row contains

• the graph H we built,

• a matching of value 22,

• a matching of value 21 (which is the minimum weight maximum matching),

• a matching of value 22, and

• the set of edges to be double in the input graph.

(c) This statement is false. Here is a counter-example.

x

This graph satisfies the hypothesis but does not have a perfect matching.

It is easy to see that this graph contains no perfect matching. In a perfect matching, x is matched
to exactly one vertex so two of the triangles do not contain a vertex matched to x. Then, one of
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these two triangles will contain an unmatched vertex. This is a contradiction to the fact we had
a perfect matching.

It is also easy to check that |N(S)| ≥ |S| for all subsets of vertices by first checking that this
is true for a triangle (without counting their edge to x). Thus, this property is satisfied for the
graph without x. Then, we just need to check that the property still holds when we add x.

4. (a) We use the shorthand
∏k

i=1
ai to denote the product a1a2 . . . , ak. Let T = S1 × S2 × . . . × Sk.

Without loss of generality, for each i, Si = {0, 1, . . . , |Si|− 1} (if not, order the elements of Si and
we apply the following argument to the index of the elements).

We define f : T → {0, 1 . . . ,
∏k

i=1
|Si| − 1} as follows.

f((s1, s2, . . . , sk)) = sk + |Sk|sk−1 + |Sk||Sk−1|sk−2 + . . . + s1

k∏

i=2

|Si| =

k∑

i=1

si

k∏

j=i+1

|Sj |

We now need to show that f is a bijection.

First, we show that f is injective. Suppose that f((s1, . . . , sk)) = f((t1, . . . , tk)) but (s1, . . . , sk)
and (t1, . . . , tk) differ. Let ℓ be the minimum index in which they differ (i.e., sℓ 6= tℓ but sj = tj for
all j < ℓ). Without loss of generality, sℓ < tℓ (otherwise, we can switch the names of (s1, . . . , sk)
and(t1, . . . , tk)). Then we can rewrite the equalities

f((s1, . . . , sk)) = f((t1, . . . , tk))
k∑

i=1

si

k∏

j=i+1

|Sj | =
k∑

i=1

ti

k∏

j=i+1

|Sj |

k∑

i=ℓ

si

k∏

j=i+1

|Sj | =
k∑

i=ℓ

si

k∏

j=i+1

|Sj |

(sℓ − tℓ)

k∏

j=ℓ+1

|Sj | +
k∑

i=ℓ+1

si

k∏

j=i+1

|Sj | =

k∑

i=ℓ+1

si

k∏

j=i+1

|Sj |

But now we claim that the left hand side is negative while the right hand side is clearly non-
negative (the sum of non-negative numbers is non-negative).

Indeed, since sℓ < tℓ, sℓ − tℓ < 0 and

(sℓ − tℓ)

k∏

j=ℓ+1

|Sj | ≤ −
k∏

j=ℓ+1

|Sj |

but each si < |Si| so

k∑

i=ℓ+1

si

k∏

j=i+1

|Sj| <

k∑

i=ℓ+1

k∏

j=i

|Sj |

Therefore their sum is negative.

Second, we show that f is surjective.

Let x ∈ {0, 1 . . . ,
∏k

i=1
|Si| − 1}. We need to show that there exists (s1, . . . , sk) ∈ T such that

f((s1, . . . , sk)) = x.
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This is true when

sj = ⌊
x

∏k
i=j+1

|Si| − 1
⌋ mod |Sj |

To see this we can compare the values of f((s1, . . . , sk)) and x taken modulo
∏k

i=2
|Si|. We see

that both are s1 (by our definition of s1). Therefore, we can subtract s1 and divide by |S2| from
both and repeatedly compare them (the second time we would look at the remainder when divided

by
∏k

i=3
|Si|). This shows that we indeed have f((s1, . . . , sk)) = x.

Therefore, f is a bijection. So |T | = |{0, 1, . . . ,
∏k

i=1
|Si| − 1} =

∏k
i=1

|Si|.

(b) Without loss of generality, B = {0, 1, . . . , |B| − 1} (if not, order the elements of B and we apply
the following argument to the index of the elements).

Let S = B × B × . . . × B, the Cartesian product of |A| copies of B.

Let T be the set of all functions from A to B.

We define g : T → S as follows.

Let f ∈ T . Then f assigns to each element of A an element of B. Let A = {a1, a2, . . . , ax (where
x = |A|). Then (f(a1), f(a2), . . . , f(ax)) is an element of S. We set

g(f) = (f(a1), f(a2), . . . , f(ax))

First, we show that g is injective. Suppose g(f1) = g(f2). Then, by our definition of g,

(f1(a1), f1(a2), . . . , f1(ax)) = (f2(a1), f2(a2), . . . , f2(ax))

and by the definition of Cartesian product, f1(ai) = f2(ai) for all i. Thus, f1 = f2 (as functions).

Second, we show that g is surjective. Let (b1, b2, . . . , bx) ∈ S (for all i, bi ∈ B but they need not
be distinct). Then we can define a function f : A → B as f(ai) = bi for i from 1 to x. f is indeed
a function since it assigns an element of B (namely bi) to each element of A. And, by definition
of g, g(f) = (b1, b2, . . . , bx).

Therefore g is a bijection. So |T | = |S| and by question a), |S| = |B||A|.

5. This is known as König’s theorem.

Let G = (V, E) be any bipartite graph (with parts A and B). Let M be a maximum matching in G

and X be a minimum size vertex cover in G.

First, we see that |M | ≤ |X | since for each edge in M , X contains one of its endpoints (by definition
of a vertex cover) and edges in M do not share any endpoints (by definition of a matching).

Second, we claim that |M | ≥ |X |.

Let G1 be the subgraph of G with vertex set (X ∩ A) ∪ (N(X ∩ A) − X) (i.e., all vertices of the cover
in A and their neighbours not in the cover) and all edges between these vertices (so G1 is an induced
subgraph). We claim that G1 contains a matching of size |X ∩ A|.

Note that if some subset S of X ∩ A has |N(S)| < |S| in G1 then we can replace S by N(S) in G to
obtain a smaller vertex cover of G (we only need to check that all edges incident to a vertex of S is
covered). This is a contradiction to the minimality of X .

Thus, for all S ⊆ X ∩ A, |NG1
(S)| ≥ |S|. Thus, by Hall’s theorem (applied to G1 where we add

|N(X ∩ A)| − |X ∩ A| dummy vertices to A incident to all vertices in N(X ∩ A)), G1 contains a
matching of size |X ∩ A|.

Similarly, we can define G2 to be the subgraph of G with vertex set (X ∩ B) ∪ (N(X ∩ B) − X) and
all edges between these vertices. Then using the same argument (switching A and B), we get that G2

contains a matching of size |X ∩ B|.

Since G1 and G2 are subgraphs of G with no vertices in common, G contains a matching of size
|X ∩ A| + |X ∩ B = |X |. This is a lower bound on |M | by maximality of M .
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