
MATH 363 Final Wednesday, April 28

Final exam

• This is a closed book exam. No calculators are allowed.

• Unless stated otherwise, justify all your steps.

• You may use lemmas and theorems that were proven in class and on assignments unless stated other-
wise.

• Four appendices are attached at the end of this exam. Appendix 1 contains a list of rules of inference.
Appendix 2 contains two tables of propositional equivalences. Appendix 3 contains a list of definitions
and theorems. Appendix 4 contains a glossary of symbols.

• All graphs are simple graphs unless stated otherwise. All graphs have no loops.
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Appendix 1: Rules of inference

Rule Name
P ∧Q P ∧Q

P Q ∧E
P P

Q Q ∧I
P ∧Q Q ∧ P

—P
...
Q →I

P → Q

P

P → Q →E
Q

P P

P ∨Q Q ∨ P ∨I
P ∨Q Q ∨R

P → R P → R

Q→ R Q→ R ∨E
R R

P → F
¬P ¬I
P

¬P ¬E
F
¬¬P

P ¬¬E
F
P FE
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Appendix 2: Table of equivalences

For propositional logic.

p ∧T ≡ p

p ∨ F ≡ p

p ∨T ≡ T
p ∧ F ≡ F
p ∨ p ≡ p

p ∧ p ≡ p

¬(¬p) ≡ p

p ∨ q ≡ q ∨ p

p ∧ q ≡ q ∧ p

(p ∧ q) ∧ r ≡ p ∧ (q ∧ r)
(p ∨ q) ∨ r ≡ p ∨ (q ∨ r)
¬(p ∨ q) ≡ ¬p ∧ ¬q
¬(p ∧ q) ≡ ¬p ∨ ¬q

p ∨ (p ∧ q) ≡ p

p ∧ (p ∨ q) ≡ p

p ∨ ¬p ≡ T
p ∧ ¬p ≡ F

p→ q ≡ ¬p ∨ q

For first order logic. The above as well as the following.

¬∃x p(x) ≡ ∀x ¬p(x)
¬∀x p(x) ≡ ∃x ¬p(x)
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Appendix 3: Definitions and theorems

Definition 1. We call P1, . . . , Pk ⊢ Q an argument. An argument is valid if we can infer the conclusion
Q given the hypotheses P1, . . . , Pk and invalid otherwise.

Definition 2. A graph G is an ordered pair (V, E) where V is a set of vertices and E is a (multi) set of
edges: 2-element subsets of V .

Lemma 3. (Handshaking lemma) Let G = (V, E) be a graph. Then

∑

v∈V

deg(v) = 2|E|

Theorem 4. Let G be a graph. The number of odd degree vertices in G is even.

Definition 5. A walk consists of an alternating sequence of vertices and edges consecutive elements of
which are incident, that begins and ends with a vertex. A trail is a walk without repeated edges. A path
is a walk without repeated vertices.

If a walk (resp. trail, path) begins at x and ends at y then it is an x − y walk (resp. x − y trail, resp.
x− y path).

A walk (trail) is closed if it begins and ends at the same vertex. A closed trail whose origin and internal
vertices are distinct is a cycle.

Definition 6. A circuit is a trail that begins and ends at the same vertex.

Some equivalent definitions of paths and cycles.

Definition 7. A path in a graph G is a sequence of vertices p1, . . . , pk such that for all 1 ≤ i ≤ k − 1,
(pi, pi+1) is an edge in G.

A cycle in a graph G is a path p1, . . . , pk such that (pk, p1) is an edge of G.

Definition 8. A subgraph H of a graph G is a graph such that V (H) ⊆ V (G) and E(H) ⊆ {(u, v)|(u, v) ∈
E(G), u ∈ V (H), v ∈ V (H)}.

An induced subgraph H of G is a subgraph of G where E(H) = {(u, v)|(u, v) ∈ E(G), u ∈ V (H), v ∈
V (H)} (i.e., we have all edges between vertices of H).

Definition 9. Pn is the graph on n vertices v1, . . . , vn and edges (vi, vi+1) for each i from 1 to n− 1.
Cn is the graph on n vertices v1, . . . , vn and edges (v1, vn) and (vi, vi+1) for each i from 1 to n− 1.
Kn, the complete graph, is the graph on n vertices v1, . . . , vn and all edges (i.e., (vi, vj) for all 1 ≤ i <

j ≤ n).
Qn, the hypercube graph, is the graph on 2n vertices with each vertex labelled by a different binary

string of length n and two vertices are adjacent if and only if their labels in exactly one bit.

Definition 10. A path in a graph G is a subgraph of G that is a copy of Pk for some k

A cycle in a graph G is a subgraph of G that is a copy of Ck for some k

Definition 11. The length of a path P is the number of vertices in it and is denote |P | or |V (P )|. The
length of a cycle is the number of vertices in it.

Definition 12. An Eulerian circuit in a graph G is a circuit which contains every edge of G.
An Eulerian trail in a graph G is a trail which contains every edge of G.

Definition 13. A graph G is connected if there is a path between every pair of vertices. G is disconnected
otherwise.

A graph G is k-connected if there does not exist a set of at most k − 1 vertices of G whose removal
yield a disconnected graph.

A connected component of a graph G is a maximal connected subgraph (meaning we cannot add more
edges and vertices while preserving connectivity).
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Theorem 14. Let G be a multigraph. G is a connected and all vertices of G have even degree if and only
if G has an Eulerian circuit and G has no zero degree vertex.

Definition 15. An Hamiltonian cycle in a graph G is a cycle which contains every vertex of G.
An Hamiltonian path in a graph G is a path which contains every vertex of G.

Theorem 16. There exists an ordering (or sequence) containing all n-bit binary strings exactly once where
every consecutive string differ in exactly one bit and the first and last string differ in exactly one bit.

Lemma 17. If a graph G has a Hamiltonian cycle then G is 2-connected.

Theorem 18. (Dirac’s theorem) If a graph G has at least 3 vertices and the degree of every vertex of G

is at least |V (G)|
2 then G has a Hamiltonian cycle.

Definition 19. A tree is a connected graph with no cycles.
A forest is a graph with no cycles (which is not necessarily connected).

Definition 20. A rooted tree is digraph obtained from a tree T and a special vertex r ∈ V (T ) called the
root by directing every edge “towards” the root (e.g., from the vertex farthest from the root to the vertex
closest to the root).

Lemma 21. If T is a tree with at least 2 vertices then T has at least 2 vertices of degree 1.

Theorem 22. Every tree on n vertices has exactly n− 1 edges.

Problem 23. Minimum spanning tree
Input: A connected graph G = (V, E) and weights we ≥ 0 for each edge e ∈ E

Output: A subset F of E such that (V, F ) is connected and given these restrictions,
∑

e∈F we is mini-
mized.

Algorithm 24. Kruskal’s algorithm
Initialize F to the empty set.
Sort the edges in ascending order of weights
For each edge e in this ordering.

If (V, F ∪ {e}) does not contain a cycle then add e to F

Return F

Theorem 25. Kruskal’s algorithm returns a minimum spanning tree.

Problem 26. Shortest path
Input: A connected graph G = (V, E), weights we > 0 for each edge e ∈ E and two vertices s, t ∈ V .
Output: A minimum weight path from s to t in G.

Algorithm 27. (Simplified) Dijkstra’s algorithm
Initialize an array d indexed by V to ∞
d[s]← 0
S ← {s}
Initialize an array prev indexed by V to null.
While t 6∈ S

Find e = (u, v) ∈ E with u ∈ S, v ∈ V \ S minimizing d[u] + w(u,v).
d[v]← d[u] + w(u,v)

prev[v]← u

S ← S ∪ {v}
Return d and prev

To obtain the path from the output, repeatedly follow the prev pointers, starting from t.
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Lemma 28. Dijkstra’s algorithm assigns d values in a non-decreasing order.

Lemma 29. A subpath of a minimum weight path is a minimum weight path (between different endpoints).

Theorem 30. The d values returned by Dijkstra’s algorithm corresponds to minimum weight distance from
s.

Definition 31. A matching in a graph G = (V, E) is a subset of the edges M ⊆ E where all vertices of
(V, M) have degree at most 1.

Definition 32. A perfect matching in a graph G is a matching M where all vertices of G are incident to
some edge of M .

Theorem 33. (Hall’s theorem) Let G be a bipartite graph with parts A and B. G contains a perfect
matching if and only if |A| = |B| and for all S ⊆ A, |S| ≤ |N(S)|.

Algorithm 34. Input: A bipartite graph G = (V, E) with parts A and B, a matching M in G, the set of
unmatched vertices U of A and the set of unmatched vertex W of B.

Output: Either

1. An M -augmenting path in G, or

2. A subset S of A with |S| > |N(S)|.

Initialize an array prev of pointers
S ← U

T ← ∅
For s ∈ S, set prev[s]←null
While true

If ∃e = (u, v) ∈ E with u ∈ S and v 6∈ T then
prev[v]← u

If v ∈W then
return the path from v following prev pointers.

T ← T ∪ {v}
w ← the vertex matched to v in M

S ← S ∪ {w}
prev[w]← v

Else
return S

Algorithm 35. Input: A bipartite graph G = (V, E) with parts A and B, a matching M in G, the set of
unmatched vertices U of A and the set of unmatched vertex W of B.

Output: Either

1. An M -augmenting path in G, or

2. “An M -augmenting path does not exist in G.”

Build a digraph H with vertex set A and directed edges {(u, v)|∃v ∈ B, (u, v) 6∈M, (v, w) ∈M}.
Run a graph search algorithm (e.g., DFS or BFS) in H starting from U and see if we can reach a vertex in N(W ).

Problem 36. Chinese postman problem
Input: A connected graph G = (V, E), weights we ≥ 0 for each edge e ∈ E.
Output: A minimum weight set of edge of G that we need to “double” to make the graph Eulerian.
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Algorithm 37. for solving the Chinese postman problem
Compute the degrees of all vertices in G

Let S be the set of odd degree vertices in G

Build H , the weighted complete graph with vertex set S and weights
wu,v =shortest path distance from u to v in G

Find a minimum weight maximum matching M in H .
Let F be the union of all edges of G on paths corresponding to edges of M .
Return F .

Definition 38. A set is a (unordered) collection of distinct elements.

Definition 39. A function f from a set A to a set B, denoted f : A→ B, is an assignment of one element
of B to each element of A.

f(a) is the element of B assigned to a ∈ A.

Definition 40. A function f : A → B is said to be injective (or one-to-one) if ∀a1, a2 ∈ A, f(a1) =
f(a2)⇒ a1 = a2 (i.e., no two elements of A get assigned the same element of B).

A function f : A → B is said to be surjective (or onto) if ∀b ∈ B∃a ∈ A, such that f(a) = b (i.e., all
elements of B are assigned some element of A).

A function is bijective if it is both injective and surjective.
A bijective function is called a bijection.

Theorem 41. If there is a bijection between A and B then |A| = |B|..

Theorem 42. The number of subsets of a set S of size n is 2n.

Theorem 43. The complete graph on n vertices (Kn) has n(n−1)
2 edges.

Theorem 44. Let G = (V, E) be a bipartite graph with parts A and B. Then

∑

v∈A

deg(v) = |E| =
∑

v∈B

deg(v)

Corollary 45. Let f : A→ B be a function such that every element of B is a assigned exactly k elements
of A. Then k|B| = |A|.

Lemma 46. For any two sets A and B, |A ∪B| = |A|+ |B| − |A ∩B|.

Lemma 47. For any three sets A1, A2 and B, (A1 ∩B) ∩ (A2 ∩B) = A1 ∩A2 ∩B.

Lemma 48. For any k+1 sets A1, . . . , Ak and B, (A1∩B)∪(A2∩B)∪. . .∪(Ak∩B) = (A1∪A2∪. . .∪Ak)∩B.

Theorem 49. (Inclusion-exclusion principle) For any n sets S1, S2, . . . , Sn,

|S1 ∪ S2 ∪ . . .∪ Sn| =
n

∑

i=1

|Si| −
∑

1≤i<j≤n

|Si ∩ Sj |+
∑

1≤i<j<k≤n

|Si ∩ Sj ∩ Sk| − . . . + (−1)n|S1 ∩ S2 ∩ . . . ∩ Sn|

Lemma 50. The number of subsets of size k of a set of size n is
(

n
k

)

= n!
k!(n−k)! .

Definition 51. A fixed point of a function f : A→ A is an element a ∈ A such that f(a) = a.

Definition 52. A derangement is a function f : A→ A with no fixed points.

Theorem 53. The number of derangements from A to A where |A| = n is

n
∑

i=0

(−1)i n!

i!
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Theorem 54. The number of ways of choosing k elements out of n elements when repetition is allowed is
(

n+k−1
n−1

)

.

Theorem 55. If f : A→ B and g : B → A are functions and ∀a ∈ A, g(f(a)) = a and ∀b ∈ B, f(g(b)) = b

then f and g are bijections.
We write f−1 for g in this case.

Theorem 56. Every graph with at least 2 vertices has two vertices of the same degree.

Theorem 57. (Pigeonhole principle) If we put more than n objects into n boxes then there is a box with
at least 2 objects in it.

Theorem 58. (Generalized pigeonhole principle) If we put n objects into k boxes then there is a box
with at least ⌈n

k ⌉ objects in it.

Definition 59. Let G = (V, E) be a graph.
A clique in G is a subset U of V such that there is an edge between every pair of vertices in U .
A stable set in G is a subset U of V such that there no edge between any pair of vertices in U .

Theorem 60. A graph with 6 vertices contains either a clique of size 3 or a stable set of size 3 (or both).

Definition 61. The Ramsey number R(s, t) is the minimum number such that every graph with (at least)
R(s, t) vertices contains either a clique of size s or a stable set of size t.

Lemma 62. If s ≥ 3, t ≥ 3 then R(s, t) ≤ R(s− 1, t) + R(s, t− 1).

Theorem 63. If s ≥ 2, t ≥ 2 then R(s, t) ≤ 2s+t.

Theorem 64. For every s > 2, there exists a graph with 2s/2 vertices with no clique of size s and no stable
set of size s.

Definition 65. A colouring with k colours of a graph G = (V, E) is assignment c : V → {1, 2, . . . , k} such
that adjacent vertices are assigned different values.

If such an assignment exists, we say that G is k-colourable.

Definition 66. A graph is planar if it can be drawn in the plane in such a way that no two edges cross.

Theorem 67. If a planar graph has v vertices, e edges and f faces then f + v = e + 2.

Theorem 68. If a planar graph G has n vertices then G has at most 3n− 6 edges.

Corollary 69. Every planar graph has a vertex of degree less or equal to 5.

Theorem 70. Every planar graph is 5-colourable.

Definition 71. A partially ordered set (or poset) is a set S with a “less than” relation < such that if
a < b and b < c then a < c.

Definition 72. A chain in a poset (A, <) is a set of elements a1, a2, . . . , ak in A such that a1 < a2 < . . . < ak.
An anti-chain in a poset (A, <) is a set of elements a1, a2, . . . , ak in A such that ai and aj are incom-

parable for all i 6= j.

Theorem 73. Let G be a bipartite graph. The minimum size of a vertex cover in G is equal to the size of
a maximum matching in G.

Theorem 74. Dilworth’s theorem Let (A, <) be a poset. The maximum number of elements in an
anti-chain of A is the minimum size of a partition of A into chains.

Some more lemmas and theorems from the assignments.
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Lemma 75. Let G be a graph. If C = c1, c2, . . . , ck−1, ck is a cycle in G then for any j (between 1 and k),
cj , cj+1, . . . , ck−1, ck, c1, c2, . . . , cj−2, cj−1 is also a cycle in G.

Theorem 76. (Ore’s theorem)
Let G be a graph. If G has at least 3 vertices and for every pair of non-adjacent vertices u, v ∈ V (G),

deg(u) + deg(v) ≥ |V (G)| then G has a Hamiltonian cycle.

Lemma 77. Let G be a graph. For any k > 2, if G is k-connected then G is k − 1 connected.

Definition 78. A set of path P1, . . . , Pk with the same starting and ending vertex is said to be internally
vertex disjoint if no two paths have a vertex in common except for their endpoints. That is, if Pi =
u, pi,1, pi,2, . . . , v then there does not exist i, j, k, ℓ with i 6= k such that pi,j = pk,ℓ.

Theorem 79. (Part of Menger’s theorem)
Let G be a graph. If every pair of (distinct) vertices u, v ∈ V (G), there are two vertex disjoint paths

P1, P2 starting at u and ending at v then G is 2-connected.

Definition 80. The Cartesian product of two graphs G1 = (V1, E1) and G2 = (V2, E2), denoted G1×G2,
is a graph with vertex set V and edge set E defined as follows. V consists of all pair (v1, v2) for each vertex
v1 in V1, and each vertex v2 in V2 (i.e., V = {(v1, v2)|v1 ∈ V1, v2 ∈ V2}). Two vertices (u1, u2) and (v1, v2)
of G1 ×G2 are adjacent if either

• u1 = v1 and u2 is adjacent to v2 in G2, or

• u2 = v2 and u1 is adjacent to v1 in G1.

In other words, E = {((u1, u2), (v1, v2))|u1 = v1, (u2, v2) ∈ E(G2)} ∪ {((u1, v1), (u2, v2))|u2 = v2, (u1, v1) ∈
E(G1)}.

Theorem 81. If G has a Hamiltonian cycle then G×P2 has a Hamiltonian cycle where P2 is the graph on
two vertices with a single edge

Theorem 82. If G1 and G2 both have Hamiltonian cycles and |V (G1)| = |V (G2)| then G1 × G2 has a
Hamiltonian cycle

Theorem 83. If T = (V, E) is a tree then for any e ∈ E, (V, E \ {e}) is disconnected.

Definition 84. A subtree of a tree T is a subgraph of T which is also a tree.

Definition 85. Let S1, S2, . . . , Sk be sets. T = {(s1, s2, . . . , sk)|s1 ∈ S1, s2 ∈ S2, . . . , sk ∈ Sk} is called the
Cartesian product of S1, S2, . . . , Sk and is denoted by S1 × S2 × . . .× Sk.

Theorem 86. For any k and any k sets S1, S2, . . . , Sk, |S1 × S2 × . . .× Sk| = |S1||S2| . . . |Sk| (i.e., the size
of the Cartesian product of these sets is the product of the sizes of these sets).

Theorem 87. The number of functions f : A→ B where |A| = x and |B| = y is yx.
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Appendix 4: Glossary of symbols

Symbol Name Example or definition Example read as
∨ Logical or p ∨ q p or q.
∧ Logical and p ∧ q p and q.
¬ Logical not ¬p not p.
→ Implication p→ q p implies q.

If p then q.
q whenever p.

↔ Bi-implication p↔ q p if and only if q.
≡ Equivalence p ≡ q p is equivalent to q.
F Contradiction F→ p False implies p.
T Tautology T→ F True implies false.
⊢ Infer P1, . . . , Pk ⊢ Q We can infer Q from P1, . . . , Pk.
|= Models P1, . . . , Pk |= Q P1, . . . , Pk models Q.
∈ Containment x ∈ S x is in S.

x is an element of S.
⊆ Subset S ⊆ T S is a subset of T .
∩ Intersection S ∩ T = {x|x ∈ S, x ∈ T } S intersect T .

The elements in both S and T .
∪ Union S ∪ T = {x|x ∈ S or x ∈ T } S union T .

The elements in either S or T .
\ Set difference S \ T = {x|x ∈ S, x 6∈ T } S minus T .

The elements in S but not T .
| | Cardinality |S| The size of S.
∀ Universal quantifier ∀x ∈ Z, x2 ≥ 0 For all integers x, x2 is greater or equal to zero.
∃ Existential quantifier ∃x ∈ Z, x + 5 = 0 There exists an integer x such that x + 5 is zero.
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