MATH 363 Final Wednesday, April 28

Final exam

e This is a closed book exam. No calculators are allowed.
e Unless stated otherwise, justify all your steps.

e You may use lemmas and theorems that were proven in class and on assignments unless stated other-
wise.

e Four appendices are attached at the end of this exam. Appendix 1 contains a list of rules of inference.
Appendix 2 contains two tables of propositional equivalences. Appendix 3 contains a list of definitions
and theorems. Appendix 4 contains a glossary of symbols.

e All graphs are simple graphs unless stated otherwise. All graphs have no loops.
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Appendix 1: Rules of inference

Rule Name
PAQ PAQ

P Q NE

P P

Q Q N
PAQ QAP

P

Q -1
P—-qQ

P
P—qQ —&

Q

P P
PV QVP VI
PV QVR

Q—R Q—R vE

R R

P—F
-P -7
P
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F
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Appendix 2: Table of equivalences

For propositional logic.

pANT=p
pVF=p
pvT=T
pANF=F
PVP=Dp
PAP=DP
~(p) =p
pVg=qVp
PAG=gAD

(pAg)AT=pA(gAT)
(pvgVr=pV(gVr)

=(pVq)=-pA-q
~(pAq)=-pV—q

pV(pAg =p
pA(pVg =p

p\/ﬁpET
pA-p=F

p—qg=pVg

For first order logic. The above as well as the following.

—3z p(z) = Vo —p(z)

=V p(x) = Iz —p(x)
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Appendix 3: Definitions and theorems

Definition 1. We call Py,..., P, - @ an argument. An argument is valid if we can infer the conclusion
Q@ given the hypotheses P, ..., P, and invalid otherwise.

Definition 2. A graph G is an ordered pair (V, E) where V is a set of vertices and E is a (multi) set of
edges: 2-element subsets of V.

Lemma 3. (Handshaking lemma) Let G = (V, E) be a graph. Then

S deg(v) = 2/E|

veV
Theorem 4. Let G be a graph. The number of odd degree vertices in G is even.

Definition 5. A walk consists of an alternating sequence of vertices and edges consecutive elements of
which are incident, that begins and ends with a vertex. A trail is a walk without repeated edges. A path
is a walk without repeated vertices.

If a walk (resp. trail, path) begins at  and ends at y then it is an = — y walk (resp.  — y trail, resp.
x — y path).

A walk (trail) is closed if it begins and ends at the same vertex. A closed trail whose origin and internal
vertices are distinct is a cycle.

Definition 6. A circuit is a trail that begins and ends at the same vertex.
Some equivalent definitions of paths and cycles.

Definition 7. A path in a graph G is a sequence of vertices pi,...,pr such that for all 1 < ¢ < k —1,
(pi, pi+1) is an edge in G.
A cycle in a graph G is a path p1, ..., px such that (px,p1) is an edge of G.

Definition 8. A subgraph H of a graph G is a graph such that V(H) C V(G) and E(H) C {(u,v)|(u,v) €
E(G),ue V(H),ve V(H)}.

An induced subgraph H of G is a subgraph of G where E(H) = {(u,v)|(u,v) € E(G),u € V(H),v €
V(H)} (i-e., we have all edges between vertices of H).

Definition 9. P, is the graph on n vertices vy, ..., v, and edges (v;,v;4+1) for each i from 1 to n — 1.

C,, is the graph on n vertices vy, ..., v, and edges (vi,v,) and (v;, v;y1) for each i from 1 to n — 1.

K, the complete graph, is the graph on n vertices vy, ..., v, and all edges (i.e., (v;,v;) for all 1 <i <
ji<n).

@, the hypercube graph, is the graph on 2™ vertices with each vertex labelled by a different binary
string of length n and two vertices are adjacent if and only if their labels in exactly one bit.

Definition 10. A path in a graph G is a subgraph of G that is a copy of Py for some k
A cycle in a graph G is a subgraph of G that is a copy of Cj for some k

Definition 11. The length of a path P is the number of vertices in it and is denote |P| or |V(P)|. The
length of a cycle is the number of vertices in it.

Definition 12. An Eulerian circuit in a graph G is a circuit which contains every edge of G.
An Eulerian trail in a graph G is a trail which contains every edge of G.

Definition 13. A graph G is connected if there is a path between every pair of vertices. G is disconnected
otherwise.

A graph G is k-connected if there does not exist a set of at most k — 1 vertices of G whose removal
yield a disconnected graph.

A connected component of a graph G is a maximal connected subgraph (meaning we cannot add more
edges and vertices while preserving connectivity).
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Theorem 14. Let G be a multigraph. G is a connected and all vertices of G have even degree if and only
if G has an Fulerian circuit and G has no zero degree vertex.

Definition 15. An Hamiltonian cycle in a graph G is a cycle which contains every vertex of G.
An Hamiltonian path in a graph G is a path which contains every vertex of G.

Theorem 16. There exists an ordering (or sequence) containing all n-bit binary strings exactly once where
every consecutive string differ in exactly one bit and the first and last string differ in exactly one bit.

Lemma 17. If a graph G has a Hamiltonian cycle then G is 2-connected.

Theorem 18. (Dirac’s theorem) If a graph G has at least 3 vertices and the degree of every verter of G
is at least m then G has a Hamiltonian cycle.

Definition 19. A tree is a connected graph with no cycles.
A forest is a graph with no cycles (which is not necessarily connected).

Definition 20. A rooted tree is digraph obtained from a tree T' and a special vertex r € V(T') called the
root by directing every edge “towards” the root (e.g., from the vertex farthest from the root to the vertex
closest to the root).

Lemma 21. If T is a tree with at least 2 vertices then T has at least 2 vertices of degree 1.
Theorem 22. Fvery tree on n vertices has exactly n — 1 edges.

Problem 23. Minimum spanning tree

Input: A connected graph G = (V, E) and weights w, > 0 for each edge e € E

Output: A subset F' of £ such that (V, F) is connected and given these restrictions, ) | ., we is mini-
mized.

Algorithm 24. Kruskal’s algorithm
Initialize F' to the empty set.
Sort the edges in ascending order of weights
For each edge e in this ordering.
If (V,F U{e}) does not contain a cycle then add e to F'
Return F

Theorem 25. Kruskal’s algorithm returns a minimum spanning tree.

Problem 26. Shortest path
Input: A connected graph G = (V, E), weights w, > 0 for each edge e € E and two vertices s,t € V.
Output: A minimum weight path from s to ¢t in G.

Algorithm 27. (Simplified) Dijkstra’s algorithm
Initialize an array d indexed by V to oo
d[s] <0
S — {s}
Initialize an array prev indexed by V to null.
While ¢t € S
Find e = (u,v) € E with u € S,v € V'\ S minimizing d[u] + w(, ).
d[’l)] — d[u] + W(u,v)
previv] « u
S — Su{v}
Return d and prev

To obtain the path from the output, repeatedly follow the prev pointers, starting from ¢.
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Lemma 28. Dijkstra’s algorithm assigns d values in a non-decreasing order.
Lemma 29. A subpath of a minimum weight path is a minimum weight path (between different endpoints).

Theorem 30. The d values returned by Dijkstra’s algorithm corresponds to minimum weight distance from
S.

Definition 31. A matching in a graph G = (V, E) is a subset of the edges M C E where all vertices of
(V, M) have degree at most 1.

Definition 32. A perfect matching in a graph G is a matching M where all vertices of G are incident to
some edge of M.

Theorem 33. (Hall’s theorem) Let G be a bipartite graph with parts A and B. G contains a perfect
matching if and only if |A| = |B| and for all S C A, |S| < |N(S)].

Algorithm 34. Input: A bipartite graph G = (V, E) with parts A and B, a matching M in G, the set of
unmatched vertices U of A and the set of unmatched vertex W of B.
Output: Either

1. An M-augmenting path in G, or
2. A subset S of A with |S| > |[N(S5)].

Initialize an array prev of pointers
S—U
T—0
For s € S, set prev|[s] «—null
While true
If 3e = (u,v) € E with u € S and v € T then
prev[v] < u
If v € W then
return the path from v following prev pointers.
T —TU{v}
w «— the vertex matched to v in M
S — Su{w}
prevjw] «— v
Else
return S

Algorithm 35. Input: A bipartite graph G = (V, E) with parts A and B, a matching M in G, the set of
unmatched vertices U of A and the set of unmatched vertex W of B.
Output: Either

1. An M-augmenting path in G, or

2. “An M-augmenting path does not exist in G.”

Build a digraph H with vertex set A and directed edges {(u,v)|3v € B, (u,v) & M, (v,w) € M}.
Run a graph search algorithm (e.g., DFS or BFS) in H starting from U and see if we can reach a vertex in N(WW).

Problem 36. Chinese postman problem
Input: A connected graph G = (V, E), weights w. > 0 for each edge e € E.
Output: A minimum weight set of edge of G that we need to “double” to make the graph Eulerian.
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Algorithm 37. for solving the Chinese postman problem

Compute the degrees of all vertices in G

Let S be the set of odd degree vertices in G

Build H, the weighted complete graph with vertex set S and weights

Wy, =shortest path distance from v to v in G

Find a minimum weight maximum matching M in H.

Let F' be the union of all edges of G on paths corresponding to edges of M.
Return F.

Definition 38. A set is a (unordered) collection of distinct elements.

Definition 39. A function f from a set A to a set B, denoted f : A — B, is an assignment of one element
of B to each element of A.
f(a) is the element of B assigned to a € A.

Definition 40. A function f : A — B is said to be injective (or one-to-one) if Vaj,as € A, f(a1) =
f(az) = a1 = ag (ie., no two elements of A get assigned the same element of B).

A function f: A — B is said to be surjective (or onto) if Vb € B3a € A, such that f(a) = b (i.e., all
elements of B are assigned some element of A).

A function is bijective if it is both injective and surjective.

A bijective function is called a bijection.

Theorem 41. If there is a bijection between A and B then |A| = |B|..
Theorem 42. The number of subsets of a set S of size n is 2™.
Theorem 43. The complete graph on n vertices (K,) has ”("2—_1) edges.
Theorem 44. Let G = (V, E) be a bipartite graph with parts A and B. Then
S deg(v) = |B = 3 deg(v)
vEA vEB

Corollary 45. Let f: A — B be a function such that every element of B is a assigned exactly k elements
of A. Then k|B| = |A|.

Lemma 46. For any two sets A and B, |AU B| = |A| + |B| — |AN B].
Lemma 47. For any three sets A1, Ay and B, (A1 NB)N(A2NB)=A1NA;NB.
Lemma 48. For any k+1 sets A1, ..., A and B, (A1NB)U(A2NB)U...U(AxNB) = (A1UA2U...UAL)NB.

Theorem 49. (Inclusion-exclusion principle) For any n sets S1,Sa,...,Sn,

[S1US UL US =) 1Si = Y. 18NS+ > [1SinSnSkl— ...+ (=1)"S1NSaN... NS,

i=1 1<i<j<n 1<i<j<k<n

Lemma 50. The number of subsets of size k of a set of size n is (Z) = ﬁlk),

Definition 51. A fixed point of a function f : A — A is an element a € A such that f(a) = a.
Definition 52. A derangement is a function f : A — A with no fixed points.
Theorem 53. The number of derangements from A to A where |A| = n is

>l

=0
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Theorem 54. The number of ways of choosing k elements out of n elements when repetition is allowed is
(nJrkfl) ]

n—1

Theorem 55. If f: A — B and g: B — A are functions and Va € A, g(f(a)) = a and Vb € B, f(g(b)) =b
then f and g are bijections.
We write f~1 for g in this case.

Theorem 56. FEvery graph with at least 2 vertices has two vertices of the same degree.

Theorem 57. (Pigeonhole principle) If we put more than n objects into n bozxes then there is a box with
at least 2 objects in it.

Theorem 58. (Generalized pigeonhole principle) If we put n objects into k bozxes then there is a box
with at least [ ] objects in it.

Definition 59. Let G = (V, E) be a graph.
A clique in G is a subset U of V' such that there is an edge between every pair of vertices in U.
A stable set in G is a subset U of V such that there no edge between any pair of vertices in U.

Theorem 60. A graph with 6 vertices contains either a clique of size 3 or a stable set of size 3 (or both).

Definition 61. The Ramsey number R(s,t) is the minimum number such that every graph with (at least)
R(s,t) vertices contains either a clique of size s or a stable set of size t.

Lemma 62. If s > 3,t > 3 then R(s,t) < R(s — 1,t) + R(s,t — 1).
Theorem 63. If s > 2,t > 2 then R(s,t) < 25T,

Theorem 64. For every s > 2, there exists a graph with 2°/% vertices with no clique of size s and no stable
set of size s.

Definition 65. A colouring with k colours of a graph G = (V, E) is assignment ¢: V — {1,2,...,k} such
that adjacent vertices are assigned different values.
If such an assignment exists, we say that G is k-colourable.

Definition 66. A graph is planar if it can be drawn in the plane in such a way that no two edges cross.
Theorem 67. If a planar graph has v vertices, e edges and f faces then f +v =e+ 2.

Theorem 68. If a planar graph G has n vertices then G has at most 3n — 6 edges.

Corollary 69. Every planar graph has a vertex of degree less or equal to 5.

Theorem 70. Every planar graph is 5-colourable.

Definition 71. A partially ordered set (or poset) is a set S with a “less than” relation < such that if
a < band b < cthen a <ec.

Definition 72. A chain in a poset (A, <) is a set of elements a1, as, . .., ax in A such that a1 < ag < ... < ag.
An anti-chain in a poset (A, <) is a set of elements a1, az,...,ar in A such that a; and a; are incom-
parable for all i # j.

Theorem 73. Let G be a bipartite graph. The minimum size of a vertex cover in G is equal to the size of
a mazimum matching in G.

Theorem 74. Dilworth’s theorem Let (A, <) be a poset. The mazimum number of elements in an
anti-chain of A is the minimum size of a partition of A into chains.

Some more lemmas and theorems from the assignments.
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Lemma 75. Let G be a graph. If C' = c1,¢a,...,cp—1,Ck is a cycle in G then for any j (between 1 and k),
CjyCjtls -y Cha1,Ck;C1,C2,...,Cj—2,Cj—1 15 also a cycle in G.

Theorem 76. (Ore’s theorem)
Let G be a graph. If G has at least 3 vertices and for every pair of non-adjacent vertices u,v € V(G),
deg(u) + deg(v) > |V(G)| then G has a Hamiltonian cycle.

Lemma 77. Let G be a graph. For any k > 2, if G is k-connected then G is k — 1 connected.

Definition 78. A set of path P, ..., P, with the same starting and ending vertex is said to be internally
vertex disjoint if no two paths have a vertex in common except for their endpoints. That is, if P, =
U, Pi1, Pi,2, - - -, ¥ then there does not exist 4, j, k, ¢ with ¢ # k such that p; ; = pr.e.

Theorem 79. (Part of Menger’s theorem)
Let G be a graph. If every pair of (distinct) vertices u,v € V(G), there are two vertex disjoint paths
Py, Py starting at uw and ending at v then G is 2-connected.

Definition 80. The Cartesian product of two graphs G; = (V1, E1) and Go = (Va, E»), denoted G x Ga,
is a graph with vertex set V and edge set E defined as follows. V consists of all pair (v1, vs) for each vertex
vy in V4, and each vertex ve in Va2 (i.e., V = {(v1,v2)|v1 € Vi,v9 € Va}). Two vertices (uq,us) and (v1,va)
of G1 x G5 are adjacent if either

e u; = v; and us is adjacent to vy in Ga, or
e us = vy and u; is adjacent to v1 in Gj.

In other words, E = {((u1,u2), (v1,v2))|u1 = v1, (uz,v2) € E(G2)} U {((u1,v1), (u2,v2))|uz = ve, (u1,v1) €
E(G1)}-

Theorem 81. If G has a Hamiltonian cycle then G X Py has a Hamiltonian cycle where Py is the graph on
two vertices with a single edge

Theorem 82. If G; and G2 both have Hamiltonian cycles and |V(G1)|
Hamiltonian cycle

|[V(G2)| then G1 x G2 has a

Theorem 83. If T = (V, E) is a tree then for any e € E, (V, E\ {e}) is disconnected.
Definition 84. A subtree of a tree T is a subgraph of T" which is also a tree.

Definition 85. Let S1,Ss,...,Sk be sets. T = {(s1,52,...,8k)|[$1 € 51,82 € Sa,...,8, € Sk} is called the
Cartesian product of S, 55,...,5 and is denoted by S7 x So x ... X Sk.

Theorem 86. For any k and any k sets S1,Sa,...,Sk, [S1 X S2 x ... x Sg| = |S1]|S2]...|Sk| (i.e., the size
of the Cartesian product of these sets is the product of the sizes of these sets).

Theorem 87. The number of functions f : A — B where |A| = x and |B| =y is y.
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Appendix 4: Glossary of symbols

Symbol Name Example or definition Example read as
\Y Logical or pVq p or q.
A Logical and pAq p and gq.
- Logical not -p not p.
— Implication p—q p implies q.
If p then gq.
q whenever p.
> Bi-implication P q p if and only if q.
= Equivalence pP=gq p is equivalent to q.
F Contradiction F—-p False implies p.
T Tautology T—F True implies false.
F Infer P,....P.FQ We can infer Q) from Py, ..., P.
E Models P,....,P. EQ Py, ..., P, models Q.
€ Containment zes xrisin S.
x is an element of S.
- Subset SCT S is a subset of T'.
N Intersection SNT ={z|lxr € S,z €T} S intersect T'.
The elements in both S and T'.
u Union SUT ={zlreSorzeT} S union T
The elements in either S or T.
\ Set difference S\T ={z|lzx e S,x ¢T} S minus 7.

W << __

Cardinality
Universal quantifier
Existential quantifier

S|
Vo € Z, 2% >0
dreZ,x+5=0

The elements in S but not T'.
The size of S.
For all integers x, 22 is greater or equal to zero.
There exists an integer x such that x + 5 is zero.

10




