Note on shortest path

Problem 1. Input: A connected graph G = (V, E), weights w, > 0 for each edge e € E and two vertices
s,t € V. Output: A minimum weight path from s to t in G.

Algorithm 1. (Simplified) Dijkstra’s algorithm
Initialize an array d, index by V', to some dummy value, say oo.
Initialize an array prev, index by V', to some dummy value, say null.
d[s] <0
S — {s}
While t € S
Find e = (u,v) € E with u € S,v € V'\ S minimizing d[u] + w(,).
dv] « d[u] + w(y,v)
prev[v] «— u
S — Su{v}
Return d and prev

To obtain the path from the output, repeatedly follow the prev pointers, starting from t.
Lemma 1. Dijkstra’s algorithm assigns d values in a non-decreasing order.

Proof. Suppose not. Look at the first time we assign a value, say d[v], which is less than the previously
assigned value, say d[u].

If prev(v] is u then d[v] = d[u] 4+ w(y,) > d[u] (since all edges have positive weight). Contradiction.

If prev(v] is not u then previv] was in S when d[u] was assigned a value. In particular, we could have
chosen the edge (prev[v], v) in that iteration (instead of the edge with u as an endpoint). Contradiction (to
Dijkstra’s algorithm choosing the minimizing edge in that iteration). O

Lemma 2. A subpath of a minimum weight path is a minimum weight path (between different endpoints).
Proof. See Assignment 4. O

Theorem 1. The d values returned by Dijkstra’s algorithm corresponds to minimum weight distance from
s.

In other words, the minimum weight s to v path has weight d[v].

Proof. Suppose on some input graph G with weights w and vertices s, ¢, this is not the case. Let d*[v] be
the minimum weight distances from s to v.

Choose v with d*[v] < d[v] such that d*[v] is minimized. Let P = s,pa,p3,...,Pk—1,v be a minimum
weight path from s to v.

d*[v] = d*[px—1] + W(uw) by lemma 2. Since all weights are positive, d*[px—1] < d*[v]. Therefore,
d*[pr-1] = d[pr-1].

So prev([v] # pr—1 as otherwise, d[v] = d[pr_1]+w(y,v) = d*[Pr—1]+ W) = d*[v] contradicts d*[v] < d[v].

When the edge (prev[v],v) was chosen by Dijkstra’s algorithm, p;_; was not in S. Otherwise, we could
have picked (px—1,v) so d[v] is at most d[pg_1] + W(y,v) = d*[v] which again contradicts d*[v] < d[v].

But this means d[px_1] was set after d[v]. By lemma 1, d[px_1] > d[v], a contradiction to d[px—1] =
d*[pr—1] < d*[v] < dv]. O

Note. Dijkstra’s algorithm can be used to find the minimum weight path from s to all other vertices of
the graph (rather than just ¢). To do this, we just need to replace the stopping condition of our while loop
(currently, t #nS) by S # V. Or, more generally, while there is still an edge from S to V' \ S.

Note. Normally, Dijkstra’s algorithm is shown using a priority queue so that the step where we need to
find the edge minimizing d[u] + w(,,.) is much faster. We would add all edges incident to a vertex v when
we add v to S and each edge (v, w) would have value d[v] + W(yw) I the queue. Each iteration, we would
remove the minimum value edge from the queue until we found an edge with one endpoint in S and the
other endpoint in V'\ S (i.e., not both endpoints in 5).

However, priority queues are not part of this course.

Example 1. (from p.650 of Rosen’s book)
Suppose we wish to find the shortest path from a to z in the following graph (i.e., s =).

b 3 C

Initially d[a] is set to 0.
The edge chosen in the first iteration is (a,d). d[d] is set to d[a] + w(4,q) = 0+ 2 = 2 and prev|d] is set
to a.
The edge chosen in the second iteration is (a,b). d[b] is set to d[a] +w(,p) = 044 = 4 and prev[b] is set
to a.
The edge chosen in the third iteration is (d,e). d[e] is set to d[d] + w(g,) = 2+ 3 = 5 and prevle] is set
to d.
The edge chosen in the fourth iteration is (e, z). d[z] is set to d[z] +w(,.) = 542 = 7 and prev[z] is set
to e.
So the length of the shortest path from a to z is 7. We can obtain this path (in reverse) by following
prev pointers in reverse. prev[z] = e, prev[e] = d, prev[d] = a so the path is a,d, e, z.
Here is the final “state” of the algorithm with selected edges highlighted.
prev[b]=a
dib]=4
b 3 ¢

did]=2 dle]=5
prev[d]=a prev[e]=d

We could draw all of this in a more compact form by drawing an arrow from v to prev{v] (if prev{v] was
set to a non-null value).

d[d]=2 d[e]=5

If we wanted to continue (e.g., if we wanted the shortest path from a to every other vertex), the next
edge we would selected is (b, ¢) and we would set

dbj=4 d[c]=7

d[d]=2 d[e]=5

