
Note on trees

Definition 1. A tree is a connected graph with no cycles.
A forest is a graph with no cycles (which is not necessarily connected).

From computer science, you might be familiar with what are called rooted trees such as recursion trees
or binary search trees.

Definition 2. A rooted tree is digraph obtained from a tree T and a special vertex r ∈ V (T) called the root
by directing every edge “towards” the root (e.g., from the vertex farthest from the root to the vertex closest
to the root).

r

Figure 1: Some examples of trees. The tree on the right is the rooted tree obtained from the tree in the
middle and r.

Lemma 1. If T is a tree with at least 2 vertices then T has a vertex of degree 1.

Proof. Suppose the lemma is false. Then there is a tree T with at least 2 vertices with no vertices of degree
1.

Since T is connected and has at least 2 vertices, T has no vertex of degree 0 (otherwise, there is no paths
from a degree 0 vertex to any other vertex).

Therefore, T only has vertices of degree at least 2.
We will now find a cycle in T , which is a contradiction. We build a walk as follows.

• Start at any vertex v ∈ V (T)

• Move along unused edges until either

1. we get stuck (because there are no more unused edges around the current vertex), or

2. we visit a vertex we have previously visited.

We note that we cannot actually get stuck. Indeed any vertex which we visit for the first time has at
least one unused edge incident to it (because it started with at least 2 unused edges).

Therefore, we stop when we re-visit an already visited vertex. But now the subpaths from that vertex to
itself is a cycle. This is a contradiction to T being a tree (since trees have no cycles).

The previous lemma allows us to prove the following interesting fact.

Theorem 1. Every tree on n vertices has exactly n − 1 edges.

Proof. We prove this theorem by induction on n, the number of vertices of the tree.
If T has a single vertex then it has no edges so the theorem is verified for n = 1.
Now for the inductive step.
Suppose all trees on n− 1 vertices have n− 2 edges. We will show that an arbitrary tree T on n vertices

has n − 1 edges.
By the previous lemma, there is a vertex v of degree 0 in T .

1

We claim that T − v is a tree (on n − 1 vertices). T − v has no cycles as a cycle in T − v is a cycle in
T . T − v is connected as a path in T between two vertices u, w ∈ V (T − v) is still a path in T − v since all
internal vertices (non-endpoints) of a path have degree at least 2.

Therefore, by induction, T − v has exactly n − 2 edges. T has exactly one more vertex than T − v and
exactly one more edge than T − v since v has degree exactly 1. Therefore, T has n − 1 edges as required.

We have therefore proven the theorem by induction.

Theorem 2. Let T = (V, E) be a tree and e 6∈ E(T). Then the graph (V, E ∪ {e}) contains a unique cycle
C (and C contains e).

The new graph (V, E ∪ {e}) is sometimes denoted T + e.

Proof. Let e = (u, v). Since T is connected, there is a path P1 from u to v in T . This path is a cycle in
T + e (by our definition of cycle).

If there is another cycle in T + e, we can obtain (from it) other another path P2 between u and v in
T (check this from the definitions). But now, concatenating P1 with P2 backwards gives a walk from u to
u in T . Since P1 and P2 are different, we can obtain a cycle from this walk (e.g., by looking at the first
time P2 reversed differs from P1 and the first time the walk uses a vertex of P1 again after that). This is a
contradiction to T having no cycles.

Minimum spanning tree
Suppose we want to build a network to connect n nodes (of, for example, computers). These nodes need

not be connected directly to each other. Furthermore, we want to build the cheapest such networks.

Problem 1. Input: A connected graph G = (V, E) and weights we ≥ 0 for each edge e ∈ E Output: A
subset F of E such that (V, F) is connected and given these restrictions,

∑
e∈E we is maximized.

Here, weights are thought of as costs for “building” an edges.
We can immediately sees that if (V, F) is a tree then we have satisfied the connectivity condition. Fur-

thermore, if we have a cycle in (V, F), we can remove an edge of the cycle from F to get a cheaper network
which is still connected. This is why this problems is called the minimum spanning tree problem.

By Theorem 1, we know that any solution will contain exactly |V | − 1 edges. In particular, we can pick
any tree in the case where all edge have the same weight.

Algorithm 1. (Kruskal’s algorithm)
Initialize F to the empty set.
Sort the edges in ascending order of weights
For each edge e in this ordering.

If (V, F ∪ {e}) does not contain a cycle then add e to F

Return F

Theorem 3. Kruskal’s algorithm returns a minimum spanning tree.

Proof. To prove this theorem, we need to show that the set of edges F returned by Kruskal’s algorithm has
3 properties.

(1) F is connected.

(2) F has no cycles.

(3) F has minimum weight.

First, we prove (1). Let u, v be two arbitrary vertices in V . We will show that there is a path between
them. Let P be a path in G from u to v (P exists since G is connected). For each edge of this path e ∈ E(P)
that is not in F , there is a path Pe between its endpoints in F (otherwise, e should be added to F when

2

it was considered in the for-loop). Replacing each edge e with the path Pe gives a walk from u to v in T .
From this walk, we can obtain a path from u to v.

Second, we prove (2). At the beginning of the algorithm F is empty and thus contains no cycles. If at
some iteration i of the for loop, the current set of edges Fi yield no cycles (in (V, Fi)) then because of the
condition we check, there is no cycle in the set Fi+1 of the next iteration.

Finally, we prove (3). Let F ∗ be a minimum spanning tree which maximizes the number of edges of F

it contains (that is, it maximizes |F ∩ F ∗|. If F = F ∗ then we have proven (3) (since F ∗ is a minimum
spanning tree).

Let Fi be the set of edges at the first iteration of the for-loop where we added an edge e 6∈ F ∗ to Fi. So
Fi+1 = Fi ∪ {e}. By Theorem 2, (V, F ∗ ∪ {e}) contains a unique cycle C.

Since (V, Fi+1) contains no cycles, there is an edge f of C not in Fi+1. We claim that wf ≥ we.
Suppose not. If wf < we then we claim that our algorithm could have picked f instead of e (contradiction

our choice of e). Indeed, if we cannot pick f , it is because f is contained in a cycle in (V, Fi ∪ {f}) which is
a path P between the endpoints of f in (V, Fi). Since Fi is contained in F ∗ (because e is the first edge not
in F ∗), P is a path in (V, F ∗). But f is also in F ∗. So P together with f is a cycle in F ∗. Contradiction (to
F ∗ being a tree).

Therefore, wf ≥ we. Since C is the unique cycle in (V, F ∗ ∪ {e}) and f is in C, removing f from
(V, F ∗∪{e}) gives a tree (which is still connected). But this new tree has lower or equal weight than (V, F ∗)
and contains more edges of F than F ∗ (namely, e). Contradiction to our choice of F ∗.

Note that for Kruskal’s algorithm, we need to be able to determine if adding an edge e to an existing set
of edges F creates a cycle in (V, F ∪ {e}). This can be easily done by checking if the endpoints of e are in
the same connected component in (V, F) (or, equivalently, if there is a path between the endpoint in (V, F)).

Checking if two vertices are in the same connected component is easy. For example, we can use depth-first
search (DFS) (which you have seen in COMP 250) starting at one endpoint and see if we can reach the other.

3

