
Lecture notes on Maximum weight perfect matching

As a subroutine to the Chinese postman problem, we want solve this question.

Problem 1 (Maximum weight perfect matching).
Input: A graph G with weights w
Output: A perfect matching M of G maximizing

∑
e∈M we. (Or “G has no perfect match-

ing”)

Recall the prefect matching polytope is integral.
(PMP)

∑

u∈N(v)

xuv = 1 ∀v ∈ V (G)

∑

e∈δ(S)

xe ≥ 1 ∀S ⊆ V, |S| ≥ 3, |V − S| ≥ 3 odd

0 ≤ xe ≤ 1 ∀e ∈ E(G)

In fact, vectors in (PMP) are convex combinations of characteristic vectors of matchings
(just check no other integer solutions are possible).

So if we could optimize over it, we could set the objective to max
∑

e wexe. But there is an
exponential number of constraints. If we could decide if a solution is feasible in polynomial
time, we could use the Ellipsoid method. An algorithm which does this is a separation oracle.

So given G weighted by x, we have to decide if there is an odd cut of weight less than
1. We now see how we can find a minimum weight odd cut in a weighted graph. Then it is
just a matter of testing if the optimum is less than 1.

Problem 2 (Minimum weight odd cycle).
Input: A graph G with weights x
Output: A minimum weight cut δ(S) with |S| odd.

We can certainly find the minimum weight cut in G (using flows). If we are lucky and
this cut is odd.

Turns out if it is even then this cut (or its complement) contains a minimum odd cut.

Lemma 0.1. For any even cut S, either S or V (G)− S contains a minimum odd cut.

Notation: x(F ) =
∑

f∈F xf

Proof. Take any mininum even cut S and mininum odd cut S∗. Without loss of generality,
S ∩ S∗ is odd (or replace S by V (G)− S) and so

x(δ(S∗)) + x(δ(S)) ≥ x(δ(S ∩ S∗)) + x(δ(V − S − S∗))

by comparing the multiset of edges in these cuts.
Since S∗ is minimum, x(δ(V − S − S∗)) ≥ x(δ(S∗)).
So x(δ(S)) ≥ x(δ(S ∩S∗)). By minimality of S, x(δ(S ∩S∗)) is a minimum odd cut.
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This suggests a recursive algorithm:
Find a minimum cut S and if its even, recurse on both sides.
How can we make sure we only find (minimum) cuts that are subset of S when we recurse?

Contract V (G)− S to a single vertex.
Both graphs G/S and G/(V − S) are smaller as both S and V − S are even. Since the

cut S∗ we are looking for is odd, it contains a vertex of S and misses a vertex of S so we can
look for s ∈ S to t ∈ S cuts for all pairs s, t ∈ S.

But the contracted vertex has the wrong (representative) parity (was even, now odd).
So we keep track of a set of Veven of (contracted) even vertices and look for cuts between the
rest (of which there must be one on each side of the cut in a minimum odd cut).

Algorithm 1. min_odd_cut(G, Veven)

1. Find minimum cut S between two V (G)− Veven vertices

2. If S is odd, return S

3. Else return min(min_odd_cut(G/S, Veven ∪ {s}), min_odd_cut(G/(V − S), Veven ∪ {s})
where s is the new vertex created from from contraction.

We can find a minimum cut between odd vertices by testing all pairs. But can do it
faster by first fixing one endpoint.

Analysis sketch: T (n) = T (n1) + T (n + 2− n1) + p(n) where p(n) is the time needed
for n = |V (G)| max flows (in fact |V (G)− Veven| is enough).
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