
1 Edmonds matching polytope

The first LP one might think of for describing the matching problem is:
(MP)

maximise
∑

e∈E(G)

xe

subject to
∑

u∈N(v)

xuv ≤ 1 ∀v ∈ V (G)

0 ≤ xe ≤ 1 ∀e ∈ E(G)

Theorem 1.1. For a bipartite graph G, (MP) is integral. That is any fractional solution is
a convex combination of integral solution.

Proof. Suppose not and let ~x be an optimal solution to (MP) with minimum number of
fractional entries 0 < xe < 1.

If the subgraph of fractional valued edges contains a cycle C, we can alternate between
adding +ε and −ε on the edges of C. This gives us two new solutions: one for the maximum
ε which keeps the solution feasible and one for the minimum ε (which is negative). Now
~x is a convex combination of these two solutions, each with fewer fractional entries. By
minimality, they are both convex combinations of integer vectors, but then so is ~x (as a
convex combination of a convex combination is a convex combination).

So the subgraph of fractional valued edges is a forest. For any path between two leaves
of the same tree of this forest, we can again alternate between adding and subtracting ε on
this path to show ~x is a convex combination, a contradiction.

We did not use the objective in our proof! The result is purely about polytopes.
So with an algorithm to solve LPs, we could find the optimum for any objective function,

not just the all ones vector. I.e., we can find a maximum weight matching in a bipartite
graph.

For the general case, triangles are a problem. The vector with value 1
2
for all edges isn’t

convex combination of anything (except itself).
Thus, for general graph, we need to consider the Edmonds’ matching polytope.
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(EMP)

maximise
∑

e∈E(G)

xe

subject to
∑

u∈N(v)

xuv ≤ 1 ∀v ∈ V (G)

∑

e∈E(G[S])

xe ≤
|S| − 1

2
∀S ⊆ V, |S| odd

0 ≤ xe ≤ 1 ∀e ∈ E(G)

Theorem 1.2. For any graph G, the vertices of (EMP) is integral.

Let’s step back and prove the theorem for perfect matchings first. I.e., the polytope
defined by

(PMP)

∑

u∈N(v)

xuv = 1 ∀v ∈ V (G)

∑

e∈δ(S)

xe ≥ 1 ∀S ⊆ V, |S| ≥ 3, |V − S| ≥ 3 odd

0 ≤ xe ≤ 1 ∀e ∈ E(G)

Notation: δ(S) is all edges out of S.

Theorem 1.3. For any graph with an even number of vertices, the vertices of (PMP) are
integral.

A graph with an odd number has no perfect matchings so the polytope describing all
solutions would be empty.

Proof. Suppose not and let G,~x be a counter-example minimizing G and subject to this
minimizes the number of fractional entries, and subject to both of these minimize the size
of the support graph of ~x.

In fact, we can assume the support is G or otherwise, the support graph is also a counter-
example. Furthermore, we can suppose (for a contradiction) that ~x is a vertex of the polytope.

As beforeG contains no even cycle. Since we are looking at the perfect matching polytope,
it has no degree 1 vertex either.

So all vertices have degree at least 2. If all vertices have degree exactly 2, G is the disjoint
union of cycles. So all cycles are odd or we use the same argument as the even cycle case.
Take one such cycle C. Now by the odd set constraint, at least two vertices on C do not
satisfy the first constraint with equality.
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So all vertices have degree 2 and some vertex has degree at least 3.
Since ~x is a vertex and it has |E(G)| variables, it satisfies at least |E(G)| > |V (G)|

inequalities with equality. So at least one odd set inequality with equality, for say S.
Now, attempt to contract each side S and G− S and apply minimality.
Let xG/S be the corresponding solution for G/S (keep duplicate edges, but not loops).

By minimality, it is convex combination of integer vectors.
Let xG/(V −S) be the corresponding solution for G/(V −S) (keep duplicate edges, but not

loops). By minimality, it is convex combination of integer vectors.
Integer vectors are perfect matchings. By taking the least common multiple k of all

denominators for coefficients of the convex combinations, we can assume both xG/S and
xG/(V −S) are convex comb of the same number of matchings (with possibly multiple copies
of a matching). I.e., there’s a multiset M1 of matchings of G/S and a multiset M2 of
matchings of G/(V − S) such that

xG/S =
1

k

∑

M∈M1

1M

xG/(V −S) =
1

k

∑

M∈M2

1M .

where 1M denotes the vector that is 1 for each index e that is an edge in M and 0 everywhere
else. This is called the characteristic vector of a matching.

Because of the value ~x takes, for each e ∈ δ(S), the total number matchings containing
e in M1 and M2 are the same.

So we can pair them up the matchings along each edge e of δ(S) they contain and take
the union of the two matchings in each pair to form matchings of G. Then, ~x is 1

k
times the

sum characteristic vectors of these matchings. I.e., ~x is a convex combination of integeral
vectors, a contradiction.

Now let’s prove the integrality for (EMP) for non-perfect matchings.

Proof. We will reduce to the perfect matching case. Build an auxiliary graph G′ by making
two copies of G and adding an edge between the two copies of the same vertex to form a
new graph G′.

We just need to show the corresponding vector ~x′, defined as being equal to ~x for entries
inside each copy and equal to the remainder on a vertex for an edge between copies, satisfies
both set of constraints. The first set of (equality) are satisfied by construction (the weight of
edges between copies are chosen precisely to satisfy those constraints). It remains to show.

∑

e∈δ(S)

x′

e ≥ 1 ∀S ⊆ V, |S| odd, |S| ≥ 3, |V − S| ≥ 3

Then the convex combination we get for ~x′ gives us corresponding convex combination in
the original graph.
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To show this constraint is satisfied for any such S ⊆ V (G′), we note that S is the union
of S1 in the first copy and S2 in the second copy. This partitions G′ into 4 sets and there
are four types of edges in δ(S) as shown here.

G1

S1

S2

odd

even G2

S2-S1

Figure 1: Edges in δ(S). The sum of across red edges is at least 1 under these parity
assumptions.

Since |S| is odd S1 and S2 of different parity. Without loss of generality, |S1| is odd.
Since |S| is odd S1 and S2 of different parity and so S1 − S2 and S2 − S1 are of different

parity. Without loss of generality, |S2 − S1| is odd. Combining the second inequality of
(EMP) for S = S2 − S1 and the first inequality of (PMP) for all vertices in S2 − S1, we see
that there’s at least total weight 1 in δ(S2 − S1). But we have all these edges in δ(S) and
therefore the second constraint of (PMP) is satisfied.

Now simply restrict the convex combination of ~x′ in terms of integer vectors to the edges
of, says, the first copy of G. This shows ~x is convex combination of integer vectors.
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