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B e method

Chapters 11-15 treat the algorithmic side pf polyhedra and linear programming. In the
present chapter we discuss the most prominent algorithm, the simplex method.
The simplex method was designed by Dantzig [1951a], and is, at the moment, the

method for linear programming. Although some artificial examples show exponential
nning time, in practice and on the average the method is very efficient.

We do not aim at teaching the simplex method here—for this we refer to the text-books
on linear programming mentioned at the end of Part III.

In Section 11.1 we describe the simplex method, and show that it terminates. In Section
1.2 we discuss how the method can be performed in practice, with simplex tableaux
and the pivoting operation. In Section 11.3 we make some remarks on pivot selection
and cycling, and on the theoretical and practical complexity. Next, in Sections 11.4 and
L5 we discuss the worst-case and the average running time of the simplex method.
Finally, in Sections 11.6 and 11.7 we give two variants of the simplex method: the revised
simplex method and the dual simplex method.

ILL. THE SIMPLEX METHOD

The idea of the simplex method is to make a trip on the polyhedron underlying

& linear program, from vertex to vertex along edges, until an _Optimal veriex 1S
¢ached. This idea is due to Fourier [1826b], and was mechanized algebraically

% Dantzig [1951a], We describe the simplex method, including ‘Bland’s pivoting
fule [19773]. |
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Case 1. u=>0. Then xq 1 optimal, since
3)  cxo=udxo=ub> min {ybly > 0; y4 = ¢} = max {cx|Ax < b}.

o at the same time, U is an optimal solution for the dual problem of (1)
O )

Case 2. u ? 0. Choose the smallest index i* for which u has negative component
) Let.ybethc vector with ay = 0 for each row a of Ayt a # a,., andqai.y = — | (ie.
yl.i‘s the appropriate column of — Ag '). [Note that, for 4 > 0, x, + 4y traverses an

edge or ray of P, or is outside P for all A > 0. Moreover,
@  cy=udy=—v.>0]

Case 2 splits into two cases:

Case 2a. ay < 0foreachrowaof A. Then x, + Ayisin Pforall 4> 0,and hence
the maximum (1) 1s unbounded (using (4)).

Case 2b. ay > 0 for some row a of 4. Let 4, be the largest A such that x, + 4)
belongs to P, i.e.

B min{fir ax
ajy

$ . « 2 Y . e * ’
Let j* be the smallest index attaining this minimum. Let A, arise from Ao b)

replacing row a, by a.. and let x. -— &) b el
part of b corres J X1:=Xo + Aoy. So A,x, = b, where 0,

s ponding to A,. Start the process anew with A, X, replaced by
1y Myt
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