Optimisation convexe et combinatoire TD 5

5 janvier 2017

Exercice 1 Arbre de Gomory-Hu

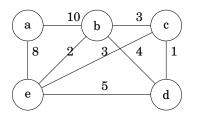
Définition 1. Valeur de coupe minimale

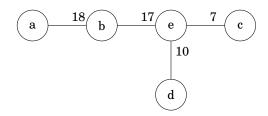
Soit un graphe G = (V; E) et un poids c_e pour chaque arête $e \in E(G)$, on définit $\alpha_G(u; v)$ comme la valeur de la coupe minimale entre u et v dans G.

Définition 2. Arbre de Gomory-Hu

Soient G = (V; E), c et α_G , on appelle un arbre T = (V(G); E(T)) de Gomory-Hu pour G si pour tout $st \in E_T$ $\delta(W)$ est une coupe minimale dans G où W est une composante de T - st.

1. Montrer pour le graphe G et l'arbre suivants que l'arbre est un arbre de Gomory-Hu pour ce graphe.





2. Prouver le théorème suivant.

Théorème 1. Soit T un arbre de Gomory-Hu pour un graphe G = (V; E). Alors, pour tous $u, v \in V$, soit st l'arête sur l'unique chemin de u à v tel que $\alpha_G(s,t)$ est minimisé on a:

$$\alpha_G(u,v) = \alpha_G(s,t)$$

et la coupe $\delta(W)$ induite par T-st est une u-v coupe minimum dans G. De ce fait $\alpha_G(s,t)=\alpha_T(s,t)$ pour tout $s,t\in V$ où le poids d'une arête st dans T est égale à $\alpha_G(s,t)$.